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Figure 1: Proposed ML model for sampling path candidates, where each sample is a ray path candidate obtained for an input scene and a given random key.

Highlights

We present a generative Machine Learning (ML)
model to avoid the exponential computation time
of exhaustive Ray Tracing (RT):

• Invariant to SE(3) and scaling transformations
•Works with arbitrary-sized inputs (DeepSets)
•Does not learn a specific scene
•Reinforcement learning (no ground-truth)
• Learns path candidates instead of EM fields

Context

Ray Tracing (RT) is a deterministic technique to
model wave propagation (Fig. 2).

Figure 2: Ray Tracing in an urban scene, scene from [1].

Computing electromagnetic (EM) fields is usually
performed in five steps (Fig. 3).
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Figure 3: Typical Ray Tracing Pipeline.

In exhaustive RT,

number of path candidates = O(NK),

with N and K the number of objects and interac-
tions.
However (Fig. 4),

num. of valid paths≪ num. of path candidates.
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Figure 4: Illustration of the many path candidates vs. few
valid paths issue.

Existing Solutions

To accelerate RT, two main approaches are used:

•Ray Launching: only a subset of paths is traced,
but it is not guaranteed to find all valid paths

•EM fields prediction with ML: models are
trained on measurements or simulations to
predict EM fields

Issues with most ML models

•EM fields are chaotic as they vary very fast,
and depend on the frequency and
radio-materials

• They are scene-specific
• They require a ground-truth

This Work

We propose a new ML model (Fig. 1) to sample
path candidates based on the GFLowNets frame-
work (Fig. 5).
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Figure 5: Path candidates generative seen as flowing
through a network.

•Path candidates: ordered sequence of object
interactions

• 1-to-1 correspondence: each path candidate
corresponds to a unique ray path

Flow-Based Path Generation

Generating a path candidate can be seen as
flowing through a network, where each node
(state) adds an object interaction (Fig. 5).

• The model learns a flow function F that maps
state s to state s′

•Each child state s′ is sampled with a probability
proportional to F(s, s′)

•Terminal states are completed path
candidates, each receiving a reward R(s′)

Customizable Reward

The reward function can be customized to pri-
oritize certain paths. E.g., a boolean function
R(s′) ≜ is_valid_ray_path(s′) can be used to re-
ward paths that lead to valid ray paths.

By minimizing the loss function:

L(s′) =
(

F(s, s′)− R(s′)−
∑

s′′
F(s′, s′′)

)2

, (1)

the model learns to sample path candidates that
lead to higher rewards (e.g., valid ray paths).

Training Procedure

Train samples are generated by sampling a
modified version of a base scene:

•BS and UE are randomly placed in the scene
•A random number of objects is kept

At each step:

1 A batch of path candidates is generated
2 The path candidates are traced with a Ray
Tracing simulator

3 The corresponding loss (1) is computed
4 A gradient-based update is performed

Results and Future Work

Wetrainedourmodel on anurban scene (Fig. 2) to
sample first-order (K = 1) and second-order (K = 2)
reflection paths.

Table 1: Simulation parameters.

# features MLPs’ depth batch # steps

100/100/500 3 100 100k

We evaluated the model on two metrics:

•Accuracy: % of generated samples leading to
valid ray paths

•Hit rate: % of all valid ray paths found in the
generated samples

on a validation set of 100 random scenes, sam-
pling 10 path candidates for each.

Table 2: Ourmodel vs. random sampling and ongoingwork.

K Random This Ongoing

1 Acc. 3 % 38 % 17 %
Hit rate 25 % 78 % 90 %

2 Acc. 0.03 % 8 % 14%
Hit rate 0.2 % 30 % 84%

In the future, we will:

• Train on more diverse and complex scenes
•Compare coverage maps generated with and
without the model

•Evaluate actual computation gains
•Study non-sparse reward functions

Open Access Tutorial & Code

The model is implemented using our open-
source Differentiable RT Python library
DiffeRT [2] and a detailed tutorial is avail-
able on our GitHub repository, see QR codes.

Tutorial GitHub
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