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Abstract—For more than twenty years, Ray Tracing methods
have continued to improve on both accuracy and computational
time aspects. However, most state-of-the-art image-based ray
tracers still rely on a description of the environment that only
contains planar surfaces. They are also limited by the number
of diffractions they can simulate. We present Min-Path-Tracing
(MPT), an alternative to the image method that can handle
diffractions seamlessly, while also leveraging the possibility to
use different geometries for surfaces or edges, such as parabolic
mirrors. MPT uses implicit representations of objects to write
the path finding challenge as a minimization problem. We
further show that multiple diffractions can be important in some
situations, which MPT is capable to simulate without increasing
neither the computational nor the implementation complexity.

Index Terms—Ray Tracing, Image Method, Diffraction,
Telecommunications, Optimization.

I. INTRODUCTION

Over the past decades, Ray Tracing (RT) has gained in-
creased interest in computer graphics [1] and telecommunica-
tion fields [2], [3]. Generally speaking RT’s goal is to compute
every possible path between two nodes, and later apply appro-
priate physical wave propagation rules to determine a channel
model for communication between those nodes, e.g., between
base station (BS) and user equipment (UE), and derive some
important metrics, such as the path loss or interference level.
A variety of RT implementations can be found, either with
deterministic outcomes (e.g., Image RT) or stochastic (e.g.,
Ray Launching). However, regarding image based RT, modern
ray-tracers often suffer from limitations on both the number of
diffractions and the type of geometries they can handle, i.e.,
mostly polygons [4].

In this paper, we describe Min Path Tracing (MPT), an al-
ternative to the image method (IM) that allows us to generalize
the path finding process, i.e., the computation of all possible
paths between two nodes, regardless of the geometries of 3-D
scene or the number of diffractions encountered along the path.
Our technique leverages, if available, the implicit equations of
surfaces and edges in the scene to construct a minimization
problem. Then, the paths coordinates are obtained as solutions
of this problem. The structure of this work is organized as
follows. First, we define necessary mathematical tools and
notations: Sec. II establishes the problem we are solving, and
Sec. III describes how to generate the set of all possible lists
of interactions. Next, we detail how IM (Sec. III-A) and our
alternative method (Sec. III-B) work in practice. In Sec. IV,
we summarize the main steps of the computation of paths
between the BS and UE nodes in a single algorithm. Then, in

Sec. V, we compute electric field contributions from different
paths, in a simple urban scenario, to highlight the importance
of intermediate diffraction in radiocommunications. Finally,
we conclude our work in Sec. VI by comparing both methods
and discussing the future applications of MPT.

II. PROBLEM DEFINITION

A key part of any RT technique is the path finding step.
This step aims to determine one or more paths between two
nodes, e.g., BS and UE, that undergo multiple interactions
with the environment. In the frame of this paper, we restrict
our analysis to reflections and diffractions, and we assume that
we know, for each facet, an implicit equation f(x, y, z) = 0
whose (x, y, z)-solutions include the facet’s coordinates. In
other words, we first suppose to have infinite surfaces, and
we will later consider their actual frontier. Additionally, we
assume that we also have an implicit equation for each
edge, as well as their direction vector at each point. The
uniqueness, or existence, of a reflected or diffracted path
depends on the shape of the objects the path interacts with.
For simple diffraction or reflection on infinite planar surfaces
and straight edges, this path is unique. However, specular
reflection on concave paraboloids introduces symmetry and
multiple possible solutions. Once a path is found, it must be
validated. Indeed, as we first assume that objects are possibly
infinitely long, we can find a path with an interaction point
that does not fall inside the actual object, as expected. This
separation between path finding and path validation helps us
to develop methods that are agnostic of the object’s size. In
the context of this paper, the path validation step is performed
a posteriori.

Let nt be the number of interactions with the environment,
and L := {L1, . . . , Lnt

} the list of nt surfaces or edges. The
number of reflections and diffractions are noted, respectively,
nr and nd, such that nt = nr + nd. The list order matters,
as the k-th interaction will be on the k-th element Lk in L.
In a 3-D space, the problem of finding such path reduces to
determining the location of the nt points or 3nt unknowns,
one for each object in L.

A. Specular Reflection

Specular reflection is the regular, mirror-like reflection ob-
served when an incident wave reflects into a ray that makes
the same angle with the normal vector to the surface, but from
the opposite side (Fig. 1). Therefore, denoting vectors in bold
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Fig. 1. Illustration of the specular reflection, for which an incident vector
reflects on a surface such that both the incident and reflected vectors make
the same angle, i.e., θi = θr , with the surface normal n̂ defined in (2).

symbols, the incident vector i and reflected vector r are related
by

r̂ = ı̂− 2⟨ı̂, n̂⟩n̂, (1)

where the vector normalization allows for arbitrary sized r
vectors. Above, the operators ⟨·, ·⟩ and ·̂ refer to the dot
product and the normalized vector, respectively.

Note that the surface does not have to be planar; we only
need to know its local normal vector at every location in the
3-D scene. Moreover, if we possess an implicit equation of our
surface, f(x, y, z) = 0, then the normal vector can be easily
derived with

n̂ =
∇f

∥∇f∥
, (2)

where ∇ is the gradient operator.

B. Edge Diffraction

For electromagnetic (EM) waves with sufficiently high
frequency, i.e., when the size of the scatterer is large when
compared to the wavelength, we can approximate the diffrac-
tion phenomena using Keller’s diffraction theory [5]. The latter
states that an incident vector i diffracts on an edge with local
direction vector ê into a multitude of rays d that build up a
cone such that i and d make the same angle with ê (Fig. 2).
Incident and diffracted vectors respect therefore this relation:

⟨i, ê⟩
∥i∥

=
⟨d, ê⟩
∥d∥

. (3)

If one knows a parametric equation of the edge r(s) for
some parametrization s ∈ R, then the direction vector is
simply equal to its derivative:

ê =
r′(s)

∥r′(s)∥
, (4)

with r′(s) = dr/ds.

III. FINDING PATH CANDIDATES

Both IM and MPT require a list of interactions L to estimate
the ray path. In our approach, we consider a graph-based
construction to deduce the interaction list of each possible
path. From the visibility matrix of the scene (e.g., Fig. 3), an
adjacency matrix is built (see Fig. 4) so that it represents a
directed graph that encodes the list of all possibles trajectories
going from BS to UE.

We now describe IM, before developing our alternative
approach, the MPT method.
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Fig. 2. Illustration of the Keller diffraction cone, which gives rise to a
multitude of diffracted rays, such that hi/∥i∥ = hd/∥d∥, equivalent to (3).
One of those rays creates a path from BS to UE.
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Fig. 3. 2-D scenario with triangular-shaped objects on which reflection or
diffraction can occur. Surfaces are colored in red and edges in black.

A. The Image Method

IM determines the exact paths between BS and UE, with
a certain number of specular reflections, by computing the
successive images of the BS by orthogonal symmetries on
surfaces. As illustrated in Fig. 5, all images are first computed
successively through each surface: the BS image through the
first surface is computed, then the image of this image using
the second surface, and so on until the last surface is reached.

BS s1 s2 s3 s4 s5 s6 e1 e2 e3 e4 e5 e6 UE



BS 1 1 1 1 1 1 1
s1 1 1
s2 1 1 1 1
s3
s4
s5
s6 1 1 1 1 1 1
e1 1 1
e2 1 1 1 1
e3 1 1 1 1
e4 1 1 1 1 1 1
e5
e6 1 1 1 1
UE

Fig. 4. Adjacency matrix, G, generated from scenario illustrated on Fig. 3.
Each row of this 14 × 14 matrix refers to the visible objects as seen from
the corresponding object. For readability purposes, zeros are discarded. Inside
G, one can find the visibility matrix, V , whose coefficients are highlighted in
bold. In the case of IM, only part of this matrix is used. If one uses a similar
method to [6] that allows for diffraction at last interaction, the coefficients in
red would be discarded from G, which dramatically reduces the number of
path candidates from BS to UE.



This forward pass is summarized in the following equation:

Ik = Ik−1 − 2
〈
Ik−1 − P k, n̂k

〉
n̂k, (5)

with Ik and P k, respectively, the k-th image and any point
on the k-th surface, and I0 = BS.

Next, the interaction points are computed, from last to first,
by determining the intersection of each surface and the path
joining the previous point, or the UE, and the corresponding
image:

Xk = Xk+1 +

〈
P k −Xk+1, n̂k

〉〈
Xk+1 − Ik, n̂k

〉 (Xk+1 − Ik

)
, (6)

with Xk the interaction point on the k-th surface, X0 = BS,
and Xnt+1 = UE.

This, however, is only valid for reflections on planar sur-
faces. To account for diffraction, different approaches exist,
such as using an analytical solution and only allowing one
diffraction to occur at the last interaction [6]. Handling diffrac-
tion with IM introduces non-trivial implementations and often
leads to discarding most of them. As explained hereafter, our
method aims at developing a low-complexity implementation
of diffraction while also allowing for non-planar geometries.
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Fig. 5. Example application of IM in RT. The method determines the only
valid path that can be taken to join BS and UE with, in between, reflection with
two mirrors (the interaction order is important). First, the consecutive images
of the BS are determined through each mirror, using line symmetry. Second,
intersections with mirrors are computed backward, i.e., from last mirror to
first, by joining the UE, then the intersections points, with the images of the
BS. Finally, the valid path can be obtained by joining BS, the intermediary
intersection points, and the UE.

B. Min-Path-Tracing method

In the Min-Path-Tracing (MPT) method, we express the
path finding problem as a minimization program enforcing the
estimated path to satisfy both (1) and (3). For each reflection
(resp. diffraction), we assume to know the normal vector to
the surface (resp. the direction vector to the edge), at all points
in the space.

As (3) requires normalized vectors, we rewrite the reflection
equation (1), as

γ · r = i− 2⟨i, n̂⟩n̂, (7)

with γ = ∥i∥/∥r∥.
The path finding problem has to determine 3nt = 3nr +

3nd unknowns. Defining the points X0 and Xnt+1 as the
BS and UE locations, respectively, each of the nt interactions
depends on 9 unknowns, three 3-D points, namely the point of

departure Xk−1 from the previous interaction, the interaction
point Xk on Lk ∈ L, and the point of arrival at the next
interaction, Xk+1. Accordingly, (7) and (3) can be rewritten
as

Irk(Xk−1,Xk,Xk+1) = 0, Idk (Xk−1,Xk,Xk+1) = 0,

respectively, with the functions

Irk(Xk−1,Xk,Xk+1) := γk · (Xk+1 −Xk)

−
(
(Xk −Xk−1)− 2

〈
Xk −Xk−1, n̂k

〉
n̂k

) (8)

Idk (Xk−1,Xk,Xk+1) :=〈
Xk−Xk−1,êk

〉
∥Xk−Xk−1∥ −

〈
Xk+1−Xk,êk

〉
∥Xk+1−Xk∥ .

(9)

Note that in practice the functions Irk and Idk can be rescaled
to avoid singular denominators in (8) and (9).

If we want to find all nt points X := {Xk}nt

k=1 ∈ R3nt

that satisfy the above equations, we can equivalently find the
root of the vector function I : Rnt → R3nr+nd defined as

I(X ) =[
I1(X0,X1,X2)

⊤, . . . , Int(Xnt−1,Xnt ,Xnt+1)
⊤]⊤,

(10)

where the function Ik is either Irk or Idk , depending on the
nature of the k-th interaction (reflection or diffraction).

In addition to (10), each interaction points must lie on cor-
responding surfaces or edges. Therefore, the implicit equations
of these elements can provide the additional constraints

fk(Xk) = 0. (11)

By introducing the function F : R3nt → Rnt with F(X ) :=
[f1(X1), . . . , fnt(Xnt)]

⊤, the equation

F(X ) = 0

is satisfied if all the points lie inside their respective surfaces
or edges.

Consequently, the path finding problem amounts to verify-
ing if a minimizer X ∗ of the optimization problem

minimize
X∈Rnt

C(X) := ∥I(X)∥2 + ∥F(X)∥2, (12)

reaches a zero cost function C(X). In this case, there exists a
path corresponding to all the listed interactions. In general,
the cost C in (12) is not a convex, and numerous local
minima can exist. However, we observed numerically that with
configurations involving planar surfaces and straight edges,
solving (12) with a gradient descent converges toward the
desired solutions, regardless of the initialization. For more
general cases, e.g., where surfaces are not necessarily planar,
the minimization process should be run multiple times with
different (random) initialization. Minima such that C(X ) ̸= 0
can exist and should be discarded1.

Note that (12) can be simplified if one knows the parametric
expression of both the surfaces and edges as we can then

1In practice, due to numerical imprecisions, one could reach C(X ∗) ̸= 0
but small anyway, while X ∗ is a valid solution.



reduce the number of unknown from 3nt to 2nr + nd,
as surfaces and edges are fully described by two and one
variables, respectively. As a result, we can use a mapping
between parametric and Cartesian variables for each surface
or edge,

(sk, tk)↔ (xk, yk, zk), for surfaces, (13)
(tk)↔ (xk, yk, zk), for edges, (14)

so that the parametrization X (T ), with T gathering the
parameters (sk, tk) or tk, directly accounts for the constraints
∥F(X )∥ = 0. Then, (12) boils down to solving

minimize
T ∈R2nr+nd

∥∥I(X (T )
)∥∥2, (15)

where the solution is now obtained in the parametric space T .
This new method, minimizing (15), was validated against

IM for the simplified 2-D situation depicted in Fig. 5 and is
available as a supplementary material2. Indeed, MPT’s path
is identical to the one found previously by IM. Finally, we
provide an idiomatic code3 that implements MPT on arbitrary
geometries.

IV. PATH TRACING ALGORITHM

Algorithm 1 summarizes the different steps we utilize to
determine all the physically correct paths from some BS to a
UE, with possibly up to nt interactions with the surrounding
objects. In this algorithm, "find_minimum_path" refers to the
numerical solving for paths using MPT. Lines 1, 2, and 3
refer, respectively, to the construction of the visibility and
adjacency matrices, and the initialization of the set that will
contain all valid paths. From that, we generate the set of all
path candidates, i.e., the set of lists of interactions. Then,
for each candidate path p, we run our minimizer to find the
path coordinates. The "interaction_list" method returns the
necessary information about the selected types of interactions.
We repeat the minimization process m times, with the value
of m set as a compromise between speed, robustness against
local minima, and allowing for multiple solutions to (12).

V. APPLICATION TO AN URBAN SCENARIO

Within the frame of radiocommunications, one can combine
our method with the Uniform Theory of Diffraction (UTD) to
estimate, e.g., the EM fields. Here, we developed a simple
urban geometry with downlink communications between BS
and UE where building edge diffraction plays an important
role (see Fig. 6). In this scenario, the BS antenna is an ideally
isotropic linearly polarized antenna transmitting at 1GHz such
that its generated electric field is

E(r) =
E0

r
e−jkrθ̂, (16)

with r the distance to the observation point QO, θ̂ the vertical
polarization vector, k the wavenumber, and E0 the magnitude
of the electric field at r = 1m.

2Access the full symbolic resolution: https://tinyurl.com/symsol.
3Access our method implemented: https://tinyurl.com/MPTimpl.

Algorithm 1 Tracing paths between two nodes
Input: Maximum number of interactions nt, objects database
D , BS position and UE position

Output: List of paths from BS to UE, stored in S
Initialization

1: V ← visibility_matrix(D)
2: G ← adjacency_matrix(BS,V,UE)
3: S ← ∅

Generate path candidates using NetworkX’s syntax
4: P ← all_simple_paths(G,BS,UE, nt + 2)

Iterate over all paths
5: for path p in P do
6: L ← interaction_list(p)
7: repeat m times
8: X 0 ← random_guess()
9: X , C(X )← find_minimum_path(L,X 0)

10: if (C(X ) < threshold) and (X is valid) then
11: S ← S ∪ {X}
12: end if
13: end repeat
14: end for

For the sake of simplicity, we consider that surfaces are pla-
nar and assimilated to perfect electrical conductors. Buildings
have a 15m × 15m square base and have a height of (from
left to right) y = 20, 10 and 40m. Their center is located at
x = 0, 15 and 27m. BS and UE’s coordinates are, respectively,
(x, y) = (0m, 22m) and (8m, 2m). After a reflection or a
diffraction, the received field is, respectively,

Er(s) = E(QR) ·

C(reflection)︷ ︸︸ ︷
R r

r+s e
−jks, (17)

Ed(s) = E(QD) ·D
√

r
s(r+s) e

−jks︸ ︷︷ ︸
C(diffraction)

, (18)

where QR (resp. QD) is the point of reflection (resp. diffrac-
tion), s is the distance from QO to QR (resp. QD), E(QR)
(resp. E(QD)) is the received field at QR (resp. QD), R (resp.
D) is the dyadic reflection (resp. diffraction) coefficient, and
r is the distance from BS to the point of interaction. More
details can be found in [7], [8].

In general, it is well known that one cannot simply chain
UTD diffraction coefficients [9] to account for multiple con-
secutive diffractions, but rather use specific coefficients for
a given number of diffractions [10], [11]. However, in the
situation depicted in Fig. 6, two consecutive diffractions are
never in the transition region of each other. This is shown
by the fact the transition function required to compute D is
always equal to one. Therefore, we are in a case where UTD
reduces to the Geometrical Theory of Diffraction [5], [8], and
we can apply each diffraction individually.

The total received field can be rewritten as

E(UE) =
∑
X∈S

E(X 1)
∏

Lk(X )

C(Lk), (19)



TABLE I
RECEIVED ELECTRIC FIELD AT UE, SORTED BY PATHS WITH SIMILAR INTERACTIONS, AND DIVIDED BY THE RECEIVED FIELD FROM A THEORETICAL

LINE OF SIGHT (LOS) PATH. LETTER D IS FOR DIFFRACTION AND LETTER R IS FOR REFLECTION. e.g., RRD STANDS FOR ALL THE PATHS THAT
ENCOUNTER TWO REFLECTIONS AND ONE DIFFRACTION. PATHS WITH RELATIVE CONTRIBUTION ABOVE −80dB ARE MARKED IN BOLD.

Number of interactions 1 2 3

Interaction list D RD DR DD RRD RDR RDD DRR DRD DDR DDD
E/ELOS (dB) -32 -236 -242 -44 -231 -246 -69 -212 -72 -81 -60

BS

UE

Fig. 6. 2-D projection of the scenario of interest. In this, the LOS and most
reflection paths are blocked so that diffraction becomes the principal mean of
propagation for the information. Two paths (among all possible) are shown:
single (in red) and double (in blue) interaction.

where C is the dyadic coefficient of interaction Lk, that ac-
counts for reflection or diffraction depending on what applies.

Table I summarizes the received electrical field at UE from
different levels of interaction with the environment. It shows
that paths with diffraction as intermediate interaction (e.g.,
DDD) can contribute more than paths with other types of
interaction (e.g., DRD). Here, single diffraction is by far the
strongest path, but one could imagine scenarios where single
(D) and double (DD) diffractions are blocked, meaning paths
with three levels of interaction become dominant contributors
to the received power.

VI. CONCLUSION

We conclude this study by discussing the different fields of
application of our method, as well as its limitations. Then, we
also compare its performance with respect to IM. We finally
provide a few perspectives for future developments.

Fields of application: First, for our method to work, we
need a precise representation of the environment. Except for
polygon-only geometries, obtaining the implicit equation for
objects is not trivial, which increases the level of details re-
quired for our method to work. Besides, diffraction coefficients
become increasingly hard to compute for non-planar surfaces
or with lossy materials, i.e., when part of the power is absorbed
by the materials. In such cases, we suggest approximating the
environment with a discrete representation, such as triangular
meshes. This way, we could locally model surfaces as planar
polygons, and extract edges from there. It is worth noting that
MPT will probably not scale well with the number of objects,
but so does the image method.

Second, we showed in (15) that our problem greatly simpli-
fies if we can obtain a parametric mapping for every object.
In the specific case of polygon-only geometries, deriving a
parametric equation from the set of points that defines a
polygon or an edge can easily be done.

Comparison with image method: In terms of computa-
tional complexity, IM is linear with the number of the number
of interactions, while the complexity of our method depends
on the solver that is used for the minimization, but is at least
as expensive as IM.

However, the scenario presented in Fig. 6 shows that double
or triple diffraction can play an important role in radiocom-
munications, which IM cannot predict. MPT is therefore an
extension of IM that adds more possibilities on what can be
simulated, in exchange to a slightly higher computational cost.

Future work: In this paper, we neglected other types
of interaction than reflection or diffraction. Nevertheless, we
could easily extend our method to, e.g., account for refraction.
Indeed, using Snell’s law, we know that incident and refracted
vectors are linked together. As such, adding support for refrac-
tion would amount to inserting a new equation, similar to (1),
in our model. Diffuse scattering is also a type of interaction
that can play an important role in radiocommunications, but
was not studied here.

Next, we did not detail how to minimize (12). From (8) and
(9), we observe that our system has a tridiagonal form, and
one could use this information to accelerate the minimization
process by reducing the amount of necessary computations.
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