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Abstract—We present a fast, differentiable, GPU-accelerated
optimization method for ray path tracing in environments con-
taining planar reflectors and straight diffraction edges. Based
on Fermat’s principle, our approach reformulates the path-
finding problem as the minimization of total path length, enabling
efficient parallel execution on modern GPU architectures. Unlike
existing methods that require separate algorithms for reflections
and diffractions, our unified formulation maintains consistent
problem dimensions across all interaction sequences, making
it particularly suitable for vectorized computation. Through
implicit differentiation, we achieve efficient gradient computation
without differentiating through solver iterations, significantly
outperforming traditional automatic differentiation approaches.
Numerical simulations demonstrate convergence rates compa-
rable to specialized Newton methods while providing superior
scalability for large-scale applications. The method integrates
seamlessly with differentiable programming libraries such as
JAX and DrJIT, enabling new possibilities in inverse design and
optimization for wireless propagation modeling. The source code
is openly available at https://github.com/jeertmans/fpt- jax.

Index Terms—Parallel programming, Electromagnetic propa-
gation, Radio propagation, Ray tracing.

I. INTRODUCTION

When determining possible ray paths connecting two com-
municating nodes, such as a transmitter (TX) and a receiver
(RX), exhaustive Ray Tracing (RT) algorithms typically ex-
plore all combinations of object interactions in the scene. For
each candidate path, the corresponding ray is traced while
ignoring non-interacting objects, and subsequently discarded
if it is obstructed or if the computed interaction points fall
outside the boundaries of the interacting objects.

According to Fermat’s principle, the “path taken by a ray
between two given points is the one that can be traveled in the
least time” [1]. In homogeneous media, where wave velocity is
constant, this reduces to selecting the path of minimal length.
Although this suggests that ray paths can be computed via
minimization, the procedure must be computationally efficient,
as the number of candidate rays grows exponentially with
the number of objects and interactions. Hence, path tracing
methods must prioritize speed.

For specular reflection on planar objects, the image method
provides exact solutions with computational complexity linear
in the number of reflections [2]. However, for diffraction—
an essential interaction in wireless communications [3]—
the image method does not apply. Instead, minimization-

based approaches have been proposed and have demonstrated
promising performance [4], [5], [6].

Most existing approaches, however, are not designed to
scale efficiently on GPUs due to extensive branching, nor are
they well-suited for integration with differentiable frameworks.
To the best of our knowledge, most existing ray tracers,
such as Sionna RT [7], separate the solution into two dis-
tinct processes: one for reflection-only paths, and another
for reflection-and-diffraction paths. Furthermore, diffraction is
usually supported only in a restricted form, often limited to a
single diffraction occurring at a fixed position in the interaction
chain (typically the last).

In this work, we introduce a generic optimization method
capable of handling an arbitrary number of reflections and
diffractions in any order, without compromising performance
on diffraction-only cases. Moreover, the structure of our
problem allows us to compute derivatives efficiently through
implicit differentiation, resulting in faster performance than
relying on automatic differentiation (AD).

Our main contributions are:

« A generic differentiable solver for ray paths with arbitrary
reflections and diffractions;

o A performance comparison with state-of-the-art methods;

e A clean open-source implementation in JAX [8], also
available through our DiffeRT RT tool [9].

II. RELATED WORK

The fundamental principle underlying ray path determina-
tion in free-space is Fermat’s principle, which states that elec-
tromagnetic waves propagate along paths of minimal length.
For scenarios involving multiple interactions with scattering
objects, this naturally leads to a minimization problem whose
objective is to find the path of shortest length between the
source and observation points.

Carluccio and Albani [4] presented important work on
efficient ray tracing for multiple straight wedge diffraction.
Their approach formulates the ray tracing problem as the
minimization of the total path length, leveraging the strict
convexity of the cost function to guarantee a unique global
minimum. The authors used a modified Newton search al-
gorithm with near-quadratic convergence, achieving remark-
able computational efficiency for scenarios involving only
diffraction interactions. However, their method is specifically



designed for edge diffraction and does not address mixed
reflection-diffraction scenarios.

Building upon this foundation, Puggelli, Carluccio, and Al-
bani [5] extended their approach to handle scenarios compris-
ing both planar reflectors and straight wedges. Their general-
ized algorithm applies the image method to eliminate reflective
surfaces, effectively reducing the problem to a pure diffraction
scenario that can be solved using the original Carluccio-
Albani method. While this approach maintains computational
efficiency, it introduces several limitations for modern parallel
computing architectures. Specifically, the treatment of reflec-
tions through image theory requires different computational
paths depending on the sequence of interaction types, leading
to extensive branching operations that are inherently inefficient
on GPU architectures, where uniform execution across parallel
threads is essential for optimal performance.

Furthermore, the Newton-based approaches in [4], [5] ex-
hibit problem sizes that depend on the number and order of
diffractions within the interaction sequence. This variability
in problem dimensionality creates additional challenges for
GPU implementation, as efficient parallel execution typically
requires uniform problem shapes across all threads. The de-
pendency on interaction order also complicates the implemen-
tation of vectorized operations, which are crucial for achieving
high throughput on modern hardware accelerators.

Despite the computational elegance of Fermat-based path
tracing—where paths are determined by minimizing path
length according to physical principles—relatively little re-
search has been conducted to improve algorithmic perfor-
mance or adapt these methods for emerging computational
paradigms. Most existing ray tracing frameworks continue to
rely on separate algorithms for pure reflection (using the image
method) and mixed reflection-diffraction scenarios, leading to
code that cannot be efficiently parallelized on GPUs.

Another line of recent research is the advent of AD
frameworks, which have revolutionized scientific computing
by enabling efficient computation of derivatives for complex
algorithms [10], [11]. In the context of RT, AD capabilities are
increasingly important for applications such as inverse design,
optimization of wireless networks, and machine learning-
based propagation modeling [7], [12], [13]. However, directly
applying AD to iterative solvers—such as the Newton meth-
ods used in existing Fermat-path tracing approaches—often
yields suboptimal performance due to the need to differentiate
through the entire iteration sequence.

In this work, we propose to bridge these existing contri-
butions by (1) developing a unified framework that handles
arbitrary sequences of reflections and diffractions within a
single algorithmic procedure that can be accelerated on GPUs,
while (2) enabling fast derivative computation through implicit
differentiation rather than AD through solver iterations. Our
approach builds upon the convex optimization foundations
established by Carluccio and Albani while addressing the
computational architecture requirements of modern ray tracing
applications.

Fig. 1. Tllustration of a ray path with n interactions, including reflections
and diffractions, inspired from [4, Fig. 1]. For conciseness, A;, 4 is shorthand
notation for A; . ;, i.e., the j-th base vector of the i-th object.

[II. METHODOLOGY

The path tracing task consists of finding all feasible paths
between two fixed points, namely the TX and RX antennas,
subject to at most nyax specular reflection or diffraction in-
teractions with surrounding objects. In practice, we first list all
ordered sequences of n objects, corresponding to all candidate
paths subject to exactly n interactions, for n = 1,..., nyax.
For each of these ordered sequences, we find the coordinates of
the interaction points that lead to the shortest path (Fermat’s
principle). The search for the shortest path is formulated as
a minimization problem, which we solve using an iterative
optimization method. This optimization procedure is detailed
hereafter, and is applied in parallel to many different ordered
sequences of n objects. As is common in minimization-based
approaches [4], [5], [14], as well as with the image method [2],
objects are first assumed to be infinitely large when solving
for the paths, with possible occlusions by other objects being
ignored. The ray paths are then post-processed using standard
ray-object intersection tests. This work does not study this
post-processing step, as it is common to all methods. Finally,
gradients of the solution can be obtained through implicit
differentiation.

A. Notation

We use bold uppercase letters (e.g., A) to denote matrices
and tensors, bold lowercase letters (e.g., a) for vectors, and
non-bold lowercase letters (e.g., a) for scalars. The ¢-th ele-
ment (resp. row) of a vector a (resp. matrix A) is denoted
by a; (resp. A;), while the (i,7)-th element of a matrix A
is denoted by a; ;. The transpose of a vector or matrix is
indicated by the superscript " . The Euclidean norm of a vector
a is denoted by ||al|.

B. Problem Formulation
Formally, a ray path X™ is obtained as the solution of the

minimization problem

X* = argmin L(X), (1)

XE]R(n+2)><3



where L(X) denotes the total path length
n
LX) =) [[wips — i, 2)
i=0

with x;, 1 <1 < n, representing the intermediate interaction
points, and xy and x,4; corresponding to the start and
end points (typically the TX and RX coordinates in wireless
propagation scenarios), see Fig. 1.

In the common case of planar interactions', such as specular
reflection on planes or diffraction on straight edges, the
minimization problem (1) is strictly convex when expressed
in a parametric space [4].

Indeed, each interaction point x; can be expressed as an
affine transformation of parametric variables ¢; € R%:

x; = Aty + by, 3)

where b; is a reference point on the i-th planar object, A; €
R3*4 is a matrix of basis vectors spanning the object, and
d is the intrinsic dimension of the object (d = 2 for planar
reflections, d = 1 for edge diffractions), see Fig. 1.

A key advantage of this formulation is that all matrices
A; can be organized into a single tensor A = {A;}™ ;.
When d = 2, interactions corresponding to diffractions are
easily handled by using O as the second base vector. While
this may increase the apparent number of unknowns for some
interaction types, it makes the problem particularly well-suited
for massively parallel execution on GPUs, where many ray
paths are solved simultaneously. We discuss the effect of this
parametrization on convergence speed in later sections.

The minimization problem thus becomes

T = argmin L(T'; A, b), (€))
T
where the objective function is given by:

L(T;A,b) = Z |Aigitiv1 +bip1 — Ait; = bif|,  (5)
i=0
where Aoty and A, 1t, 1 are set to zero, and by and b,, 1
are defined as the start and end points, respectively.

C. Iterative Solver

We utilize the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [15, Chapter 3], a quasi-Newton method, to solve
the path length minimization problem (4). Unlike the custom
Newton method used in [4], [5], BFGS does not require
computing the Hessian matrix, which can be ill-conditioned in
certain scenarios, particularly when interaction points are close
together, when the path segments are nearly collinear, or more
importantly when one of the base vectors is zero, which occurs
for diffraction interactions. Instead, BFGS approximates the

! Although this may appear restrictive, most 3D models—particularly out-
door urban environments—are described by polygonal objects, which are
inherently planar. Detailed non-planar geometries are relatively rare. In [14],
we proposed a minimization-based approach that extends to more complex
objects, such as spheres, though at the cost of losing convexity.

inverse Hessian H using only gradient evaluations, making it
more robust when the Hessian is ill-conditioned.

Unlike traditional BFGS implementations, which perform
an inexact line search along the descent direction P, we use
a fixed-point iteration scheme

mn T
o (AA;p;) (Axy) Awi-i-(XkAAiP,;
gt = im0 BAm) () ” . (©)
Do (M) T (AAip)/|Awi + oFAAp,

where AA;p, = Aj11p; 1 — Aip;, and Az = x5 — x4,
to find the optimal step size o™ that minimizes the objective
function along the direction P

o =argmin L(T + aP; A, b). @)

In practice, we find that the fixed point iterations converge
(in most cases, the right-hand side is locally continuously
differentiable and its derivative is smaller than 1 in absolute
value). We observe that one iteration is often sufficient to reach
the optimal step size with a tolerance of 1%.

Finally, and unlike traditional iterative solvers on CPUs,
we run the algorithm on a fixed number of iterations, to
ensure uniform execution time across all paths in a batch.
Indeed, on GPUs, relying on convergence criteria can lead to
significant performance degradation as all threads must wait
for the slowest one to finish.

D. Implicit Differentiation for Gradient Computation

In many applications, such as inverse problems or parameter
optimization, it is necessary to compute the gradient of one
scalar quantity (e.g., the received power) with respect to many
problem parameters (e.g., object positions or orientations).
A straightforward approach is to use reverse-mode AD to
differentiate through all the iterations of the solver. However,
this can be computationally expensive and memory-intensive,
especially when the direct method (here, radio propagation
via RT) involves many iterations, as AD must record and
backpropagate through every operation in the iterative process.

To address this, we leverage the fact that, at convergence,
our solver produces a solution T7(0) (with 8 = (A, b)) that
satisfies the first-order optimality condition:

VrL(T*(6);6) =0, @®)

where L is the objective function.

Assuming the solver has converged to such a stationary
point, we can use the implicit function theorem [16, Theo-
rem 7-6, p. 146] to compute the total derivative of T with
respect to the parameters 6, without differentiating through the
entire sequence of solver steps. However, we still rely on AD
to compute the Jacobian vectors of VL.

Applying the implicit function theorem to (8) yields:

0 . OVrLoT™
%VTL(T (6);0) + T 00 €))
Rearranging, we obtain:
aT*  [oVeL)Th 0
20 {8T } a—OVTL. (10)
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Fig. 2. Average error on 1000 paths against time taken by different solvers, for n increasing from 1 to 5. Top row corresponds to 1D problems (diffractions),
bottom row to 2D problems (reflections). Diffractions solved with d = 2 are shown with dashed lines in the top row, only with our solver as other methods
fail. Similarly, mixed reflections and diffractions cases are show in dashed in the bottom row, for our solver only. Our solver is run in two configurations:
standard (ours) and with 64 fixed-point iterations per step (ours-64). Because the image method is exact, a vertical line is shown to indicate its execution time.

In practice, we are often interested in computing vector-
Jacobian products of the form v " %, as required by reverse-
mode AD. This can be done efficiently by solving the follow-

ing linear system:

ovrL] !
uT:—vT[ 8; ] , (11)
or equivalently
ovrL]"
[ a; ] u=-—v, (12)
where 3Z;L is a symmetric positive semi-definite matrix,

being the Hessian of the convex function L, and then comput-
ing
or* 0
T T
——=u —-VrlL.
Y o6~ a8 T
This approach avoids differentiating through the entire
solver, significantly reducing computational cost and memory
usage, while providing exact gradients under the assumption
of solver convergence.

13)

IV. SIMULATION RESULTS

We evaluate our method on a variety of random scenarios to
demonstrate its effectiveness and computational efficiency. All
simulations are conducted on an NVIDIA GeForce RTX 3070
GPU with 8§ GB memory. We implemented the algorithm with
JAX [8], leveraging its just-in-time compilation and convenient
support for generating GPU-compatible code. While JAX pro-
vides built-in AD capabilities, it also allows defining custom
derivative rules, so we can implement implicit differentiation

manually to avoid differentiating through solver iterations in
backward-mode AD.

A. Performance Comparison

We benchmark our approach against the following solvers:

« the image method (IM), in reflection-only scenarios;

« a standard gradient descent (GD);

o the Carluccio and Albani (CA) method [4], extended to
d = 2 when relevant;

e and a limited-memory BFGS (L-BFGS) solver imple-
mented in the Optax library [17].

Each solver processes 1000 ray paths in parallel, performing
up to 100 iterations. We record the average error and execution
time using single-precision floating-point (32-bit) arithmetic.
The average error is defined as the mean Euclidean distance
between the estimated interaction points and the ground-truth
points obtained from a high-precision solver on a CPU.

Fig. 2 summarizes the results for increasing path complex-
ity, with the number of interactions n ranging from 1 to 5. The
top row corresponds to diffraction-only problems (d = 1), and
the bottom row to reflection-only problems (d = 2). Dashed
lines indicate cases involving diffractions represented using
d = 2 instead of d = 1, or mixed reflections and diffractions
(d = 2), which are only supported by our method.

As shown in Fig. 2, the standard gradient descent (GD)
consistently fails to converge. In diffraction-only configura-
tions (d = 1), our solver achieves both the lowest error and
the fastest convergence across all cases. For n > 1, increasing
the number of fixed-point iterations enables convergence down
to machine precision. Notably, extending the optimization to
d = 2 has negligible impact on accuracy or speed for our
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Fig. 3. Execution time for computing the gradient of 1000 path lengths

at T (@) with respect to all object parameters, i.c., Vo L(T*(6);8), using
implicit differentiation (solid lines) and automatic differentiation (dashed
lines), as a function of the number of interactions n, for d = 2. The solver
is run for 16 or 128 iterations, with 1 or 64 fixed-point iterations per step.

method, as the d = 1 and d = 2 curves almost coincide, while
other solvers fail to handle the additional dimension.

In reflection-only scenarios, a similar trend is observed.
Except for the simplest case (n = 1), where L-BFGS reaches
machine precision, our solver consistently delivers higher
accuracy in less time. Increasing the number of fixed-point
iterations again improves precision for larger n. The image
method remains the most efficient, achieving comparable or
better accuracy at an order-of-magnitude lower runtime.

Finally, in mixed reflection-diffraction configurations
(dashed curves in the bottom row of Fig. 2), the average
convergence is even faster than in reflection-only cases, likely
because diffractions introduce only one unknown per interac-
tion, whereas reflections introduce two.

B. Implicit vs Automatic Differentiation

When comparing the execution time of gradient computa-
tion using implicit differentiation versus AD, we observe sig-
nificant performance improvements with our approach (nearly
10 times faster) that remain constant regardless of the number
of solver iterations, the number of fixed-point iterations per
step, or the number of considered interactions; see Fig. 3. We
also observed very similar results for d = 1.

V. CONCLUSION AND FUTURE WORK

We have presented a unified, differentiable ray tracing
method that reformulates path finding as a convex optimization
problem and leverages implicit differentiation for efficient
gradient computation. The proposed approach handles arbi-
trary sequences of reflections and diffractions within a single
optimization framework, eliminating branching complexity
and enabling efficient parallel execution on GPUs.

Simulation results demonstrate that the solver achieves
fast and accurate convergence across a wide range of inter-
action scenarios, outperforming existing minimization-based
approaches in both speed and robustness. Nevertheless, the

results also reveal certain limitations, including slower con-
vergence than the image method in reflection-only cases and
occasional stagnation at moderate accuracy for complex paths.

Future work will focus on reformulating the current nons-
mooth optimization problem into a second order cone program,
to be solved with dedicated solvers [18], [19] to improve
convergence properties while preserving the advantages of
implicit differentiation [20]. Additional efforts will aim at
refining the selection of initial candidates, improving line-
search strategies, and analyzing the convergence behavior of
the proposed fixed-point scheme.
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