Min-Path-Tracing:

A Diffraction Aware Alternative to Image Method in Ray Tracing

Jérome Eertmans

How to find all paths?
Multiple methods exist!

- 1. Image-based method
- 2. Our method

- 1. Image-based method
- 2. Our method
- 3. Future & Applications

4

Summary:

Summary:

Pros

- Simple
- Fast $\mathcal{O}(n)$

Summary:

Pros

- Simple
- Fast $\mathcal{O}(n)$

Cons

- Limited to planar surfaces
- Specular reflection only

$$C = 0.00$$
 I

$$C = \underbrace{0.00}_{\mathcal{I}} + \underbrace{1.00}_{\mathcal{F}}$$

$$\mathcal{I} \sim \hat{\boldsymbol{r}} = \hat{\boldsymbol{\imath}} - 2\langle \hat{\boldsymbol{\imath}}, \hat{\boldsymbol{n}} \rangle \hat{\boldsymbol{n}}$$

$$\mathcal{I} \sim \hat{\boldsymbol{r}} = \hat{\boldsymbol{\imath}} - 2\langle \hat{\boldsymbol{\imath}}, \hat{\boldsymbol{n}} \rangle \hat{\boldsymbol{n}}$$

$$\mathcal{I} \sim \boldsymbol{r} = f(\hat{\boldsymbol{n}}, \phi)$$

$$\mathcal{I} \sim rac{\langle m{i}, \hat{m{e}}
angle}{\|m{i}\|} = rac{\langle m{d}, \hat{m{e}}
angle}{\|m{d}\|}$$

$$\mathcal{I} \sim v_1 \sin(\theta_2) = v_2 \sin(\theta_1)$$

$$\underset{\boldsymbol{\mathcal{X}} \in \mathbb{R}^{n_t}}{\operatorname{minimize}} \ \mathcal{C}(\boldsymbol{\mathcal{X}}) := \|\mathcal{I}(\boldsymbol{\mathcal{X}})\|^2 + \|\mathcal{F}(\boldsymbol{\mathcal{X}})\|^2$$

$$\underset{\boldsymbol{\mathcal{X}} \in \mathbb{R}^{n_t}}{\operatorname{minimize}} \; \mathcal{C}(\boldsymbol{\mathcal{X}}) := \|\mathcal{I}(\boldsymbol{\mathcal{X}})\|^2 + \|\mathcal{F}(\boldsymbol{\mathcal{X}})\|^2$$

$$\min_{\boldsymbol{\mathcal{X}} \in \mathbb{R}^{n_t}} ^{\text{minize}} \; \mathcal{C}(\boldsymbol{\mathcal{X}}) := \|\mathcal{I}(\boldsymbol{\mathcal{X}})\|^2 + \|\mathcal{F}(\boldsymbol{\mathcal{X}})\|^2$$

$$\mathcal{C}(\mathcal{X}) = 0$$

$$\min_{\boldsymbol{\mathcal{X}} \in \mathbb{R}^{n_t}} ^{\text{minize}} \; \mathcal{C}(\boldsymbol{\mathcal{X}}) := \|\mathcal{I}(\boldsymbol{\mathcal{X}})\|^2 + \|\mathcal{F}(\boldsymbol{\mathcal{X}})\|^2$$

$$C(\mathcal{X}) \leq \epsilon$$

If we know a mapping s.t. $(x_k, y_k) \leftrightarrow t_k$

$$\underset{\boldsymbol{\mathcal{X}} \in \mathbb{R}^{n_t}}{\operatorname{minimize}} \ \mathcal{C}(\boldsymbol{\mathcal{X}}) := \|\mathcal{I}(\boldsymbol{\mathcal{X}})\|^2 + \|\mathcal{F}(\boldsymbol{\mathcal{X}})\|^2$$

$$C(X) \leq \epsilon$$

If we know a mapping s.t. $(x_k, y_k) \leftrightarrow t_k$

$$\min_{\boldsymbol{\mathcal{T}} \in \mathbb{R}^{n_r} }^{\text{minize}} \; \mathcal{C}(\boldsymbol{\mathcal{X}}(\boldsymbol{\mathcal{T}})) := \|\mathcal{I}(\boldsymbol{\mathcal{X}}(\boldsymbol{\mathcal{T}}))\|^2$$

where n_r is the total number of (2d) reflections

$$\mathcal{C}(\mathcal{X}(\mathcal{T})) \leq \epsilon$$

What if we had a metasurface?

What if we had a metasurface?

What if we had a metasurface?

Number of interactions	1 2									3	
Interactions list E/E_{LOS} (dB)	D -32	RD -236	0.0000000000000000000000000000000000000	DD -44		20000000000	RDD -69	DRR -212	29 24 - 25	DDR -81	DDD -60

Summary:

Summary:

Pros

- Any geometry (but requires more info.)
- Any # of reflect., diff., and refract.
- Allows for multiple solutions
- Optimizer can be chosen

Summary:

Pros

- Any geometry (but requires more info.)
- Any # of reflect., diff., and refract.
- Allows for multiple solutions
- Optimizer can be chosen

Cons

- In general, problem is not convex
- Slower $\mathcal{O}(k \cdot n)$

Future work:

- Compare with Ray Launching
- Discuss different solvers / minimizers

Thanks for listening!