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We just did Ray Tracing (RT)!
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RT and EM Fundamentals

e Coreidea;
» Architecture and Challenges;

» Applications;
e Alternative methods.
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RT and EM Fundamentals
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RT and EM Fundamentals

Electrical and Magnetic fields

E (Vm™!) & B (T)
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RT and EM Fundamentals

Electrical and Magnetic fields

where C(P) = H D;-a;-e %,
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Input scene
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RT and EM Fundamentals

Credits: SSonna authors, Nvidia.



RT and EM Fundamentals

dB

Credits; Sonna authors, Nvidia.



RT and EM Fundamentals

Channel impulse response realization
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RT and EM Fundamentals

Challenge: number of paths.
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Challenge: number of paths.
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RT and EM Fundamentals

LOS +reflection
Challenge: coverage vs order and types.

Credits: Sionna authors, Nvidia.
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RT and EM Fundamentals

b

LOS +reflection + diffraction
Challenge: coverage vs order and types.

Credits;: Sonna authors, Nvidia.
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RT and EM Fundamentals
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LOS +reflection + scattering

Challenge: coverage vs order and types.

Credits;: Sonna authors, Nvidia.
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RT and EM Fundamentals

Main RT applications:

O—

O_

O_

radio channel modeling;

sound and light prop. in video games;
inverse rendering in graphics;

lenses design and manufacturing.
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RT and EM Fundamentals

Most used channel modeling methods:

o— RT;

o— empirical models;

o- stochastic models;

o- fullwave models (e.g., finite elements).
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Motivations

Why Differentiable Ray Tracing?

o- RT 1s inherently static;

o—- but scenarios are becoming dynamic;
o- recomputing the "whole map" is bad,;
o- Differentiability should be a goal!
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How to trace paths

e Ray Launching vs Ray Tracing;
e Image Method and similar;
 Min-Path-Tracing;

* Arbitrary geometries.
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How to trace paths

(ED D

Not very efficient for "point-to-point" RT
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How to trace paths

GED D

Not very efficient for "point-to-point" RT
How to exactly find paths?
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How to trace paths

17



How to trace paths

17



How to trace paths

L7
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How to trace paths
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How to trace paths

Ray Launching
Complexity O(Nr)

Paths missed Unknown

Scalability Good

Accuracy Good

Ray Tracing
O(N®)
None

Bad

Excellent
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How to trace paths

What if we want to simulate something else
than reflection on planar surfaces?
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How to trace paths
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How to trace paths

Reflection

39.74°
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How to trace paths

Reflection
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How to trace paths

Reflection on metasurfaces

!3 9 . T l -

Trr = f(R,0)
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How to trace paths

Diffraction

‘8

(i,8)  (d.e)
Il [ld]
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How to trace paths T ~ vy sin(fa) = vo sin(6;)

Retraction

39.74°

69.18°
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How to trace paths
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How to trace paths

. N 2 2
minimize C(X) := [|Z(X)[]" + || F(X)]
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. N 2 2
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where n; i1s the total number of unknowns

C(X) =0
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How to trace paths

. N 2 2
minimize C(X) := [|Z(X)[]" + || F(X)]

where n; i1s the total number of unknowns

C(X)<e
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How to trace paths

If we know a mapping s.t. (zg,yr) <> tg

. N 2 2
minimize C(X) := [|Z(X)[]" + || F(X)]

where n; i1s the total number of unknowns
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How to trace paths

If we know a mapping s.t. (zg,yr) <> tg

minimize C(X(7)) := | Z(X (7))’

where n,. is the total number of (2d) reflections

C(X(T)) <e
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How to trace paths
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How to trace paths

22



How to trace paths

Image MPT

Complexity _ —
e _ Any”
e Ai-cuson

Convexity Non convex

Convergence check | N/A or MPT None or MPT self
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Differentiable Ray Tracing

 How to compute derivatives;

» Zero-gradient and discontinuity 1ssues;
e Smoothing technique;

e Optimization example.

24



Differentiable Ray Tracing

How to compute derivatives?

o—- symbolically;

o- using finite-differences;

o— ... with automatic differentiation!
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Differentiable Ray Tracing
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Differentiable Ray Tracing

ali}néo s(x; ) = 0(x)

[C1] N s slm o) = 0 and limg s $lzra) = 1

C2] s(+;«) is monotonically increasing;

C3] s(0; ) = 3;

[C4] and s(z; ) — 5(0; ) = s(0; ) — s(—x; ).



Differentiable Ray Tracing

s(x; a) = s(ax).

The sigmoid is defined with a real-valued exponential

1
] + e—ax’

sigmoid(x; a) =

and the hard sigmoid is the piecewise linear function defined by

relu6(ax + 3)

hard sigmoid(z; o) = -

where

relu6(x) = min(max(0, x), 6).

?

(1)

(2)

(4)
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Differentiable Ray Tracing
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Differentiable Ray Tra cmg
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Differentiable Ray Tra cmg
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Differentiable Ray Tracing
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Differentiable Ray Tracing

Without approximation
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Differentiable Ray Tracing

Without approximation

-7:(33: y) = min (PRX{) (‘T?y)ﬂ 'PRXI (CE:: y))
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Differentiable Ray Tracing

Iterations: 20 Iterations: 40 Iterations: 60

y coordinate
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Status of work
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Status of work

Goals:
> (G1): Enable RT dynamic scalability;

> (G2): Novel geometrical environment representations.

33



Status of work

WP1: Differentiable RT

[T1.1] Basic interactions

[T1.2] Diffraction interactions
[T1.3] Dynamic models

[T1.4] Validations

WP2: Above-6GHz RT

[T2.1] Geometric representations
[T2.2] Memory and complexity trade-offs
WP3: Low-cost RT

[T3.1] Reducing comp. cost

[T3.2] Real hardware embedding
Methodology

Data collection

Numerical programming
Real-world tests

Interaction w/ the community
Paper submission

Writing thesis

Research internship
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Status of work

WP1: Differentiable RT (mmmsmssss s s
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Status of work

Achievements:
o—- Created generalpurpose path tracing method;

o— Introduced smoothing techniques in radio-propa. RT;
o—- Created a 2D Fully DRT open-source Python framework.
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Status of work

Future work:
o— Extend 2D framework to 3D and realistic scenes;

o— Collaborate with Sionna authors for diffraction;
o— Cross-validate w/ other tools (Sionna or Huawel's);
o- Perform quantitative comp. of RL vs RT;

o- Study compat. of MPT w/ good RIS models;
o— Learning how to trace paths with ML (deep sets).
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Status of work

Collaborations:
o— UniSiegen, Mohammed Saleh (Pr. Andreas Kolb) - 07/2023;

o— Unibo, Nicola D. C. (Pr. Vittorio D. E.) - 03/2023-12/2024;
— Huawel, Allan W. M. -03/2023-?;
o~ Nvidia, Sionna, Jakob Hoydis -?
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Conclusion
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Conclusion

Questions time!
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Diffraction regions

f=1.0 GHz ("itu_wood")
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Credits;: Sonna authors, Nvidia.



RT runtime

Runtime (s)

4 5 6 ¥
Max. depth

Credits;: Sonna authors, Nvidia.
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Keller cone

Q{f

Credits;: Sonna authors, Nvidia.
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Edge diffraction

5
4

‘\Sf _ __/"/p’ = 5" sin(8;)

p = ssin(By) / i

- ’f‘ L.'

= -x';{;{

Credits: Sonna authors, Nvidia.

44



