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Introduction

Ray Tracing for Radio Propagation

Point-to-Point (P2P)
Ray Tracing (RT)

Ray Launching
(RL)

Complexity

Exponential Linear*

Accuracy

Excellent Good*

Best for

P2P scenarios Coverage map

*: Depends on the number of rays launched.
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Introduction

The curse of P2P RT
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Introduction

The typical P2P RT pipeline
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Introduction

Circumventing the exponential complexity

There are three principal countermeasures to this fundamental problem:

1 resort to RL;
2 use a heuristic approach to reduce the number of path candidates (e.g.,

the Fibonacci method used in SionnaRT);
3 pre-compute some kind of visibility tree.
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Our Machine Learning solution

How path candidates are generated
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Our Machine Learning solution

A GFlowNet-like architecture
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Our Machine Learning solution

A GFlowNet-like architecture
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Our Machine Learning solution

A GFlowNet-like architecture

Our model:

1 does not learn a specific scene;
2 can accommodate scenes of arbitrary size;
3 generates one path candidate at a time;
4 and aims at accelerating RT, not replacing it.
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Our Machine Learning solution

How we train our model - before
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Our Machine Learning solution

How we train our model - after
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Preliminary results

Learning reflection paths in 2D scenes
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Preliminary results

Predicting 1st order path candidates
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Preliminary results

Predicting 2nd order path candidates
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Conclusion

Main contributions and future work

Our model offers:

• a novel Machine Learning approach to RT;
• promising results on 1st order path (esp. on generalization over scenes);
• and a controllable complexity (like RL).

Several avenues for improvement:
• the study of sparse reward functions, or smoothed ones using our

recent work (EuCAP 2024);
• and the general shaping of the model (layers size, etc.).
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Conclusion

Thanks

Any questions?
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Appendix

GFlowNet constraints

To achieve this, the model must be trained to respect the following
fundamental properties:

1 Each edge in the search graph must be assigned a positive flow,
F(s, s′) > 0, where s is the parent state and s′ is the child state;

2 Flow conservation between ingoing and outgoing edges must be
ensured:

∀s′
,F(s, s′) = R(s′) +∑

s′′
F(s′

, s′′), (1)

that is, the sum of output flows, F(s′
, s′′), must be equal to the input

flow, F(s, s′), minus the reward;
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Appendix

GFlowNet constraints (continued)

3 The probability of choosing state s′ given state s must be defined as

p(s′∣s) = F(s, s′)
∑s′′ F(s, s′′) , (2)

that is, the probability of traversing an edge in the search graph is equal
to its flow value normalized over all outgoing edges.
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Appendix

Loss function

For training our model, we minimize the GFlowNets loss function, which
rewrites (1) as a mean squared error:

L(s′) = (F(s, s′) − R(s′) −∑
s′′

F(s′
, s′′))

2

. (3)
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