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Model details:

1. Does not learn a specific scene
2. Arbitrary sized input scene

3. Reinforcement-based learning
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What we train on:

Accuracy: % of valid rays over the number of generated rays
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What we train on:

Accuracy: % of valid rays over the number of generated rays

What we would like to maximise:

Hit rate: % of different valid rays found over the total number of existing
valid rays
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Summary:

e First application of our model to EM fields prediction

e Preliminary results show a not-so-good match between hit rate and good
coverage map

e ML model cannot (yet) replace exhaustive RT

e EM coverage map analysis could help us improve the model




