

Comparing Differentiable and Dynamic Ray Tracing: Introducing the Multipath Lifetime Map

Jérôme Eertmans - April 1st, EuCAP 2025, Stockholm

Authors: Jérôme Eertmans, Enrico Maria Vitucci, Vittorio Degli-Esposti, Laurent Jacques, Claude Oestges

-30

-40

-50

-60

-70

-80

-90

-100

-110

Simple street canyon from Sionna RT, simulated using DiffeRT

-50

-60

-70

-80

-90

Simple street canyon from Sionna RT, simulated using DiffeRT

-70

-80

-90

Simple street canyon from Sionna RT, simulated using DiffeRT

-70

-80

-90

TX

TX RX

TX RX Objects

eacing of by paths EM fields

racing of y paths

EM fields

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

g(x)

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

g(x)

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

g(x)

Δx ?

Current limitations:

- Few available implementations
- Lack of comparison and confusion
- Unclear validity of extrapolation
- Multipath structure estimation (based on measurements)

Contributions

- y paths
 - (ii) $x_{i+1} = x_i + \alpha_i \cdot \nabla g(x_i)$

- (i) Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

Δx ?

Current limitations:

- Few available implementations
- Lack of comparison and confusion
- Unclear validity of extrapolation
- Multipath structure estimation (based on measurements)

Contributions

 \Rightarrow Provide a qualitative comparison (details in paper)

- Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

Δx ?

Current limitations:

- Few available implementations
- Lack of comparison and confusion
- Unclear validity of extrapolation
- Multipath structure estimation (based on measurements)

Contributions

- ⇒ Provide a qualitative comparison (details in paper)
- \Rightarrow Illustrate the limits of Dyn. RT

- Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

Δx ?

Current limitations:

- Few available implementations
- Lack of comparison and confusion
- Unclear validity of extrapolation
- Multipath structure estimation (based on measurements)

Contributions

- ⇒ Provide a qualitative comparison (details in paper)
- \Rightarrow Illustrate the limits of Dyn. RT
- ⇒ Introduce simulation tool and metrics to help evaluate the benefits of Dyn. RT

- Dynamic (Dyn.) RT: snapshots extrapolation using local derivatives
- (ii) Differentiable (Diff.) RT: optimization using automatic differentiation

 \bullet Methods comparison

- ullet Methods comparison
- ullet Limits of extrapolation

- Methods comparison
- Limits of extrapolation
- Multipath Lifetime Map (MLM) and metrics

- Methods comparison
- Limits of extrapolation
- Multipath Lifetime Map (MLM) and metrics
- Results of MLMs for a moving RX

	Dyn. RT	Diff. RT
Tools	Unibo's	Sionna DiffeRT (ours)
Differentiation	Manual*	Automatic
Interpretability	High (analytical*)	Low (numerical)

Line-of-sight

Reflection from W_1

Reflection from W_2

Line-of-sight

Line-of-sight+

Line-of-sight+Reflection from W_1

Line-of-sight+Reflection from W_1 +

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

For each cell C_i , we compute:

- the area covered by each multipath cell, $S_i = area(C_i)$;
- and the average minimal inter-cell distance, $\overline{d_i}$;

where

$$d_i(x) = \min_{y \notin C_i} \operatorname{dist}(x, y), \tag{1}$$

i.e., the minimum distance an object x has to travel to leave C_i .

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2

1

Line-of-sight+Reflection from W_1 +Reflection from W_2

Line-of-sight+Reflection from W_1 +Reflection from W_2 1

0

Line-of-sight+Reflection from W_1 +Reflection from W_2 1

0

Line-of-sight+Reflection from W_1 +Reflection from W_2 1 0

Line-of-sight+Reflection from W_1 +Reflection from W_2 1

0

• Dyn. and Diff. RT are different techniques levaraging derivatives

- Dyn. and Diff. RT are different techniques levaraging derivatives
 - Dyn. RT targets moving scenes using extrapolation

- Dyn. and Diff. RT are different techniques levaraging derivatives
 - Dyn. RT targets moving scenes using extrapolation
 - Diff. RT targets optimization (e.g., ML) problems

- Dyn. and Diff. RT are different techniques levaraging derivatives
 - Dyn. RT targets moving scenes using extrapolation
 - Diff. RT targets optimization (e.g., ML) problems
- Visualizing MLMs highlights the complexity of multipath clusters

- Dyn. and Diff. RT are different techniques levaraging derivatives
 - Dyn. RT targets moving scenes using extrapolation
 - Diff. RT targets optimization (e.g., ML) problems
- Visualizing MLMs highlights the complexity of multipath clusters
- MLMs are not limited to moving RXs: moving TXs, rotating walls, etc.

- Dyn. and Diff. RT are different techniques levaraging derivatives
 - Dyn. RT targets moving scenes using extrapolation
 - Diff. RT targets optimization (e.g., ML) problems
- Visualizing MLMs highlights the complexity of multipath clusters
- MLMs are not limited to moving RXs: moving TXs, rotating walls, etc.
- Related metrics are only a **tool** to help you evaluate the benefits of Dyn. RT

Slides made with Manim Slides, free and open source tool.

TABLE I
MEAN AND MEDIAN VALUES OVER ALL 50 SIMULATION SNAPSHOTS AND CELLS.

	6B		2B	
	$S (m^2)$	\bar{d} (m)	$S (m^2)$	\bar{d} (m)
Mean	225.62	1.40	840.56	3.08
Median	86.43	1.00	371.38	2.30