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Model details:

1. Does not learn a specific scene
2. Arbitrary sized input scene

3. Reinforcement-based learning
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What we train on:
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What we train on:

Accuracy: % of valid rays over the number of generated rays
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What we train on:
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What we train on:

Accuracy: % of valid rays over the number of generated rays

What we would like to maximize:

Hit rate: % of different valid rays found over the total number of existing
valid rays
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Summary:

e First application of our model to EM fields prediction
e Preliminary results show a not-so-good match between
hit rate and good coverage map
e ML model cannot (yet) replace exhaustive RT
e KM coverage map analysis could help us improve the model
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e Compare coverage maps generated with and without the model
e Evaluate actual computation gains
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In the future, we will:

e Irain on more diverse and complex scenes

e Compare coverage maps generated with and without the model
e Evaluate actual computation gains

e Study non-sparse reward functions
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B interactive tutorial () jeertmans/DiffeRT

Slides made with Manim Slides, free and open source tool.



