

Generative Path Selection Technique for Efficient Ray Tracing Prediction (Invited)

Enrico Maria Vitucci - June 23-27, Bologna

Authors: Jérôme Eertmans, Nicola Di Cicco, Claude Oestges, Enrico Maria Vitucci, Vittorio Degli-Esposti

	Point-to-Point (P2P) Ray Tracing (RT)	Ray Launching (RL)	
Complexity	Exponential	Linear*	
Accuracy	Excellent	Good^*	
Best for	P2P scenarios	Coverage map	

TX

TX RX

TX RX Objects

ates \longrightarrow paths for order N

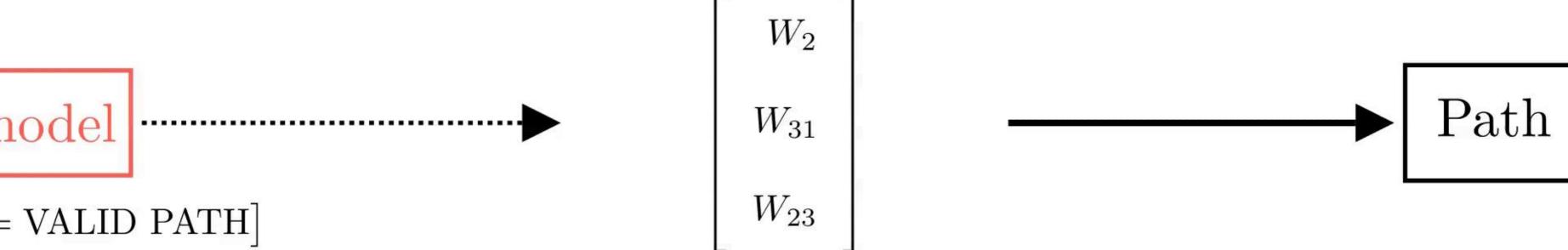
 W_1 W_2 ates W_{34} W_{35} W_{36}

 W_0

 $egin{bmatrix} W_0 & W_1 \ W_0 & W_2 \ W_0 & W_3 \ & \vdots & \vdots \ W_{36} & W_{33} \ W_{36} & W_{34} \ W_{36} & W_{35} \ \end{bmatrix}$ ates

	W_0	W_1	W_0
	W_0	W_1	W_2
	W_0	W_1	W_3
ates	:	:	:
	W_{36}	W_{35}	W_{33}
	W_{36}	W_{35}	W_{34}
	W_{36}	W_{35}	W_{36}

eccessing EM fields


Scene Generative model

RX Objects
$$\mathbb{P}[f_w(TX, RX, OBJECTS) = VALID PATH]$$

= VALID PATH]

Model details:

- 1. Does not learn a specific scene
- 2. Arbitrary sized input scene
- 3. Reinforcement-based learning

Accuracy: % of valid rays over the number of generated rays

Accuracy: % of valid rays over the number of generated rays

What we would like to maximize:

Accuracy: % of valid rays over the number of generated rays

What we would like to maximize:

Hit rate: % of different valid rays found over the total number of existing valid rays

$$\delta P_{\mathrm{dB}} = 10 |\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right) - \log_{10}\left(P_{\mathrm{pred}} + \epsilon\right)| \quad \mathrm{and} \quad \delta P_{\mathrm{r,dB}} = \frac{|\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right) - \log_{10}\left(P_{\mathrm{pred}} + \epsilon\right)|}{|\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right)|}$$

• First application of our model to EM fields prediction

- First application of our model to EM fields prediction
- Preliminary results show a not-so-good match between hit rate and good coverage map

- First application of our model to EM fields prediction
- Preliminary results show a not-so-good match between hit rate and good coverage map
- ML model cannot (yet) replace exhaustive RT

- First application of our model to EM fields prediction
- Preliminary results show a not-so-good match between hit rate and good coverage map
- ML model cannot (yet) replace exhaustive RT
- EM coverage map analysis could help us improve the model

• Train on more diverse and complex scenes

- Train on more diverse and complex scenes
- Compare coverage maps generated with and without the model

- Train on more diverse and complex scenes
- Compare coverage maps generated with and without the model
- Evaluate actual computation gains

- Train on more diverse and complex scenes
- Compare coverage maps generated with and without the model
- Evaluate actual computation gains
- Study non-sparse reward functions

Slides made with Manim Slides, free and open source tool.