Generative Path Selection Technique for Efficient Ray Tracing Prediction (Invited) Enrico Maria Vitucci - June 23-27, Bologna Authors: Jérôme Eertmans, Nicola Di Cicco, Claude Oestges, Enrico Maria Vitucci, Vittorio Degli-Esposti | | Point-to-Point (P2P) Ray Tracing (RT) | Ray Launching
(RL) | | |------------|---------------------------------------|-------------------------|--| | Complexity | Exponential | Linear* | | | Accuracy | Excellent | Good^* | | | Best for | P2P scenarios | Coverage map | | TX TX RX TX RX Objects ates \longrightarrow paths for order N W_1 W_2 ates W_{34} W_{35} W_{36} W_0 $egin{bmatrix} W_0 & W_1 \ W_0 & W_2 \ W_0 & W_3 \ & \vdots & \vdots \ W_{36} & W_{33} \ W_{36} & W_{34} \ W_{36} & W_{35} \ \end{bmatrix}$ ates | | W_0 | W_1 | W_0 | |------|----------|----------|----------| | | W_0 | W_1 | W_2 | | | W_0 | W_1 | W_3 | | ates | : | : | : | | | W_{36} | W_{35} | W_{33} | | | W_{36} | W_{35} | W_{34} | | | W_{36} | W_{35} | W_{36} | eccessing EM fields Scene Generative model RX Objects $$\mathbb{P}[f_w(TX, RX, OBJECTS) = VALID PATH]$$ = VALID PATH] ## Model details: - 1. Does not learn a specific scene - 2. Arbitrary sized input scene - 3. Reinforcement-based learning Accuracy: % of valid rays over the number of generated rays Accuracy: % of valid rays over the number of generated rays What we would like to maximize: Accuracy: % of valid rays over the number of generated rays ## What we would like to maximize: **Hit rate:** % of different valid rays found over the total number of existing valid rays $$\delta P_{\mathrm{dB}} = 10 |\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right) - \log_{10}\left(P_{\mathrm{pred}} + \epsilon\right)| \quad \mathrm{and} \quad \delta P_{\mathrm{r,dB}} = \frac{|\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right) - \log_{10}\left(P_{\mathrm{pred}} + \epsilon\right)|}{|\log_{10}\left(P_{\mathrm{GT}} + \epsilon\right)|}$$ • First application of our model to EM fields prediction - First application of our model to EM fields prediction - Preliminary results show a not-so-good match between hit rate and good coverage map - First application of our model to EM fields prediction - Preliminary results show a not-so-good match between hit rate and good coverage map - ML model cannot (yet) replace exhaustive RT - First application of our model to EM fields prediction - Preliminary results show a not-so-good match between hit rate and good coverage map - ML model cannot (yet) replace exhaustive RT - EM coverage map analysis could help us improve the model • Train on more diverse and complex scenes - Train on more diverse and complex scenes - Compare coverage maps generated with and without the model - Train on more diverse and complex scenes - Compare coverage maps generated with and without the model - Evaluate actual computation gains - Train on more diverse and complex scenes - Compare coverage maps generated with and without the model - Evaluate actual computation gains - Study non-sparse reward functions Slides made with Manim Slides, free and open source tool.